Journal of Organometallic Chemistry, 312 (1986) 305-311 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CONTRIBUTIONS TO THE CHEMISTRY OF SILICON-SULPHUR COMPOUNDS

XLII *. BIS(1-METHYLDIBENZOSILOLE)SULPHIDE: ITS SYNTHESIS, CRYSTAL STRUCTURE, AND REACTION WITH CHROMIUM HEXACARBONYL

B. BECKER **, R.J.P. CORRIU, B.J.L. HENNER,

Laboratoire Hétérochimie et Amino-Acides, U.A. C.N.R.S. 1097, Institut de Chimie Fine, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, F-34060 Montpellier - Cédex (France)

W. WOJNOWSKI **, K. PETERS and H.G. von SCHNERING

Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80 (F.R.G.) (Received April 1st, 1986)

Summary

The reaction of 1-methyldibenzosilole with elemental sulphur gave almost quantitatively bis(1-methyldibenzosilole)sulphide (I), the structure of which was determined by X-ray diffraction. The crystals are monoclinic, space group $P2_1/n$ (No. 14) with a 1772.8(3), b 921.6(3), c 1417.5(2) pm, β 102.09(1)° and Z = 4. The molecule is bent, with an Si-S-Si bond angle of 108.8(1)°.

Reaction of I with chromium hexacarbonyl gave η^6 -[bis(1-methyldibenzosilacyclopentadienyl)sulphide]chromium tricarbonyl, in which the chromium tricarbonyl moiety is bonded to one of the six-membered rings.

Introduction

During studies of the reaction between triorganosilanes and elemental sulphur we have shown that this reaction provides a convenient route to various silanethiols and disilthianes [2,3]. We describe here an efficient preparation of the title compound: bis(1-methyldibenzosilole)sulphide (I), which is representative of a new class of silyl sulphides, in which the silicon atom is part of a rigid silafluorene framework.

^{*} For part XLI see ref. 1.

^{**} Permanent address: Institute of Inorganic Chemistry and Technology, Technical University, 80-952 Gdańsk (Poland).

This compound was also of interest for our structural studies of crowded organosilicon molecules with bridging sulphur. We recently described the structures of $Ph_3SiSSiPh_3$ [4] and $(t-BuO)_3SiSSi(OBu-t)_3$ [5], in which, because of steric effects, the Si-S-Si angle is widened up to a value of 112° from the normal value of ca. 100° [6]).

A recent report of Ishikawa and Tabohashi [7] on the synthesis of the first transition metal complex containing a 9-silafluorene ligand prompted us to investigate the reaction of $Cr(CO)_6$ with our sulphur-bridged bis-silafluorene system.

Synthesis

The reaction of 1-methyldibenzosilole with elemental sulphur at 180–190°C gave bis(1-methyldibenzosilole)sulphide (I), m.p. 114.5–115°C, in 90% yield.

Compound I results from insertion of sulphur into a Si-H bond followed by condensation of the silanethiol so formed (eq. 1):

It is noteworthy that under similar conditions reaction of Ph_2MeSiH with sulphur yields both silanethiol and silyl sulphide [2].

Compound I, like $Ph_3SiSSiPh_3$ [4], is not attacked by water which rapidly cleaves the Si-S bond in Ph_3SiSH [8]. We assume that given the steric hindrance by the bulky substituents in the crowded silyl sulphides, in which rotation around the Si-S-Si bridge is suppressed, the lone pairs of sulphur also cause a steric hindrance to the formation of a transition complex involving water.

The ²⁹Si NMR shift of I was recorded at 4.76 ppm (CDCl₃); that of $(Ph_2MeSi)_2S$ [2] was determined for comparison, because of the close similarity in the neighbourhood of silicon, and a value δ (²⁹Si) 0.40 ppm was found. In our opinion [9] the difference between these two values is due to the deviation from tetrahedral configuration of Si in the five-membered ring of I (C-Si-C = 92°).

In contrast to the high yield obtained in the preparation of I, the reaction of elemental sulphur with 2,5-diphenyl-1-silacyclopentadiene gave a mixture from which only a small amount of 2,5-diphenylthiophene could be isolated. However, the mass spectrum of this mixture showed the molecular ion of the desired bis(2,5-diphenyl-1-silacyclopentadienyl)sulphide (m/e 526).

Structure

The crystal structure of I was determined by a single crystal diffraction study. The crystallographic data, atomic parameters and selected bond lengths and angles are listed in Tables 1-3. Figure 1 shows a perspective drawing of I with the atom labelling and Fig. 2 is a stereoscopic projection.

Supplementary material relating to the structure determination can be obtained from the Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggen-

TABLE 1

CRYSTAL DATA, INTENSITY COLLECTION AND REFINEMENT FOR I (T 298 K)

Compound; molecular weight	C ₂₆ H ₂₂ Si ₂ S; 422.69 amu		
Crystal size	$0.3 \times 0.5 \times 0.2 \text{ mm}$		
Lattice constants (standard	<i>a</i> 1772.8(3) pm		
deviations)	<i>b</i> 921.6(3) pm		
	<i>c</i> 1417.5(2) pm		
	β 102.09(1)°		
Space group (No.)	$P2_{1}/n$ (14)		
Molecular volume; number of			
formula units per cell	$340.99 \text{ cm}^3 \text{ mol}^{-1}; Z = 4$		
Calculated density	$d_{\rm x} = 1.240 {\rm g cm}^{-3}$		
Diffractometer; radiation	SYNTEX-P3, four circle, Mo- K_{α} , graphite monochromator		
$\mu; F(000)$	2.5 cm^{-1} ; 888		
Scan, scan range	$\omega; \ 3.5 \leqslant 2\theta \leqslant 55.0^{\circ}$		
Scan speed	$0.5-29.3 \text{ deg min}^{-1}$		
$N(hkl); N'(F > 3\sigma(F))$	2614; 2497		
Structure refinement	SHELXTL [10] on Eclipse S/250 computer		
R(aniso); H atoms isotropic	0.036		

TABLE 2

ATOMIC COORDINATES (×10⁴) AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS (pm² × 10⁻¹) ^{*a*}

Atom	x	У	Z	U _{eq}
S(1)	1613(1)	4660(1)	- 2261(1)	53(1)
Si(1)	432(1)	4722(1)	- 2094(1)	47(1)
Si(2)	2327(1)	5659(1)	-1031(1)	43(1)
C(1)	319(2)	3777(4)	- 984(2)	62(1)
C(2)	3305(2)	5634(4)	-1301(2)	59(1)
C(101)	-118(2)	3991(3)	- 3262(2)	50(1)
C(102)	-110(2)	2641(4)	- 3689(2)	63(1)
C(103)	- 525(2)	2395(4)	-4616(3)	80(2)
C(104)	- 949(2)	3505(5)	-5118(3)	86(2)
C(105)	-974(2)	4853(4)	-4712(2)	71(1)
C(106)	- 559(2)	5123(4)	- 3775(2)	53(1)
C(107)	- 525(2)	6518(4)	-3251(2)	54(1)
C(108)	- 954(2)	7747(4)	- 3593(3)	71(1)
C(109)	- 893(2)	8977(4)	- 3031(3)	83(2)
C(110)	- 413(2)	9017(4)	-2125(3)	78(2)
C(111)	11(2)	7784(4)	-1771(3)	64(1)
C(112)	- 32(2)	6535(3)	- 2327(2)	49(1)
C(201)	2005(2)	7479(3)	- 702(2)	46(1)
C(202)	1921(2)	8786(3)	-1198(2)	61(1)
C(203)	1664(2)	10015(3)	- 790(3)	75(2)
C(204)	1490(2)	9929(4)	115(3)	76(2)
C(205)	1578(2)	8652(4)	624(2)	62(1)
C(206)	1840(2)	7409(3)	228(2)	46(1)
C(207)	1969(2)	5965(3)	702(2)	45(1)
C(208)	1844(2)	5639(4)	1615(2)	60(1)
C(209)	1996(2)	4257(4)	1980(2)	75(1)
C(210)	2262(2)	3194(4)	1451(3)	75(1)
C(211)	2385(2)	3501(3)	538(2)	60(1)
C(212)	2242(2)	4887(3)	156(2)	45(1)

^a Defined as one third of the trace of the orthogonalised U_{ij} tensor.

TABLE 3

SELECTED BOND LENGTHS (pm) AND ANGLES (°) (standard deviation in parentheses)

S-Si(1)	215.6(1)	S-Si(2)	213.7(1)	
Si(1)-C(1)	184.7(3)	Si(2)C(2)	185.2(3)	
Si(1)-C(101)	186.3(3)	Si(2)C(201)	186.2(3)	
Si(1)-C(112)	186.1(3)	Si(2)-C(212)	186.1(3)	
C(101)-C(106)	141.1(4)	C(201)-C(206)	141.1(4)	
C(106)-C(107)	148.0(5)	C(206)-C(207)	148.6(4)	
C(107)–C(112)	141.5(4)	C(207)–C(212)	140.7(4)	
Si(1)-S-Si(2)	108.8(1)			
S-Si(1)-C(1)	111.2(1)	S-Si(2)-C(2)	104.2(1)	
S-Si(1)-C(101)	103.4(1)	S-Si(2)-C(201)	115.6(1)	
S-Si(1)-C(112)	114.1(1)	S-Si(2)-C(212)	115.2(1)	
C(1)-Si(1)-C(101)	117.2(1)	C(2)-Si(2)-C(201)	114.4(1)	
C(1)-Si(1)-C(112)	116.9(1)	C(2)-Si(2)-C(212)	116.0(1)	
C(101)-Si(1)-C(112)	92.1(1)	C(201)-Si(2)-C(212)	91.8(1)	
Si(1)-C(101)-C(106)	108.7(2)	Si(2)C(201)C(206)	109.1(2)	
C(101)-C(106)-C(107)	115.1(2)	C(201)C(206)C(207)	114.9(2)	
C(106)-C(107)-C(112)	115.3(3)	C(206)-C(207)-C(212)	114.9(2)	
Si(1)-C(112)-C(107)	108.6(2)	Si(2)-C(212)-C(207)	109.3(2)	

Fig. 1. Atom labeling for bis(1-methyldibenzosilole)sulphide (I).

Fig. 2. A stereoscopic drawing of I.

Fig. 3. Newman projection of I down Si(1)–Si(2) (angles increase clockwise). $S(0^{\circ})$; C(1) (232.9°); C(101) (8.0°); C(112) (115.2°); C(2) (5.1°); C(201) (136.1°); C(212) (227.9°).

stein-Leopoldshafen FRG. Please quote reference No. CSD-51813, the names of the authors, and the title of the paper.

From the stereoscopic and Newman projections (Fig. 2 and 3) it can be seen that the conformations of the two dibenzosilole frameworks as viewed along the Si(1)-Si(2) axis are rather eclipsed than staggered (for a possible explanation see ref. 4). Examination of non-bonding distances in molecule I (the distances between the C(1) methyl group-framework 2 (Fig. 1) and frameworks 1-2 are about 200 pm) shows that the rotation around the Si-S-Si bridge is suppressed by steric hindrance (Fig. 2). Steric hindrance also causes the Si-S-Si angle (108.8°) to be wider than in the less crowded molecules (see Table 4 in [4]).

It should be noted that the structure is favoured over that in which both frameworks would be face-to-face and almost parallel even though the shortest non-bonding distances would be much greater (about 350–300 pm) for the latter. It appears that the observed conformation of I reflects the stereochemistry of the reaction pathway and directional preferences during the condensation of two silanethiol molecules (eq. 1).

Reaction with chromium hexacarbonyl

The reaction of bis(1-methyldibenzosilole)sulphide (I) with chromium hexacarbonyl was carried out as previously described [11]. η^6 -[Bis(1-methyldibenzosilacyclopentadienyl)sulphide]chromium tricarbonyl (II) was isolated in 10% yield. The mass, IR, and ¹H NMR spectra of II confirmed that only one Cr(CO)₃ moiety was bonded to one of the six-membered rings. The ¹H NMR spectrum also indicated that the chromium is outside the cavity of the molecule; two methyl signals were observed with 0.2 ppm separation.

We did not obtain a sandwich type complex with chromium inserted between two sulphur-bridged dibenzosilole frameworks.

Experimental

General comments

All reactions were carried out under nitrogen, a vacuum line and Schlenk tubes being used in the case of transition metal complexes. Solvents were dried and distilled before use. $Cr(CO)_6$ was purchased from Aldrich Chemical. MeHSiCl₂ was kindly provided by Rhône Poulenc Specialités Chimiques. 2,2'-Dilithiobiphenyl was prepared according to Gilman [12]. Melting points were determined with an oil circulating apparatus and are uncorrected. IR spectra were recorded with a 310

Perkin–Elmer 298 spectrophotometer and NMR spectra with a Varian EM 360 (¹H) or Bruker AM 250 (²⁹Si, 49.694 MHz, $Cr(acac)_3$ as relaxation agent) spectrometer, with TMS as internal reference. Mass spectra were recorded on a Jeol JMS-D 100 spectrometer (electron impact, 70 eV).

Preparation of 1-methyldibenzosilole

A 1/1 mixture of 2,2'-dilithiobiphenyl and methyldichlorosilane (freshly distilled over CaH₂) in ether was refluxed for 20 h. Some LiAlH₄ was then added (to remove any excess of chlorosilane) and the mixture refluxed for a further hour. Treatment with saturated aqueous NH₄Cl followed by the usual work-up gave 60% yield of 1-methyldibenzosilole, m.p. 41-42°C.

IR(CCl₄) ν (Si-H): 2130 cm⁻¹; ¹H NMR(CCl₄, δ (ppm)): 7.0–7.9 (m,8H), 4.8 (q, 1H, J 4 Hz), 0.5 (d, 3H, J 4 Hz); ²⁹Si NMR (C₆D₆): -20.1 ppm. Analysis: Found: C, 79.58; H, 6.22; Si, 14.20. C₁₃H₁₂Si calcd.: C, 79.53; H, 6.16; Si, 14.31%. (IR and NMR spectra were identical with those reported by Ishikawa et al. [13].)

Preparation of bis(1-methyldibenzosilole)sulphide (I)

A mixture of 1.732 g (8.82 mmol) of 1-methyldibenzosilole and 0.283 g (8.82 mmol) of elemental sulphur in an evacuated Carius tube was heated at 180-190 °C in an oil bath for 48 h. The product was washed with benzene and the solvent removed under vacuum. Addition of 10 ml of pentane gave a solution from which sulphide I crystallized easily (yield 90%). Two recrystallizations from pentane gave 1.503 g (61%) of pure I, m.p. 114.5–115 °C.

¹H NMR (CCl₄, δ (ppm)): 7.15 (m, 16H_{ar}), 0.45 (s, 6H, Me); ²⁹Si NMR (CDCl₃): 4.76 ppm. Analysis: Found: C, 74.08; H, 5.28. C₂₆H₂₂SSi₂ calcd.: C, 73.88; H, 5.25%. Mass spectrum *m/e*(abundance): 422(54) *M*; 407(62) *M* – Me; 195(100) C₁₃H₁₁Si, *M* – C₁₃H₁₁SSi; 165(30).

Preparation of η^6 -[bis(1-methyldibenzosilacyclopentadienyl)sulphide]chromium tricarbonyl (II)

A mixture of 0.789 g (1.5 mmol) of I and 0.330 g (1.5 mmol) of $Cr(CO)_6$ in 24 ml n-Bu₂O and 2 ml THF was refluxed for 2 h. Evaporation of the solvents and extraction of the residue with pentane gave a yellow-orange solution, from which a yellow solid crystallized out at -20° C, which was recrystallized from pentane to give II in 10% yield, m.p. 150–152°C (dec.).

IR (toluene) ν (CO): 1965, 1895 cm⁻¹; ¹H NMR(CDCl₃, δ (ppm)): 6.8–7.6 (m, 12H), 5.0–5.5 (m, 4H), 0.6 (s, 3H), 0.4 (s, 3H). Mass spectrum, m/e(abundance): 558(6.5) M; 474(90) M – 3CO; 459(9) M – 3CO – Me; 422(9) M – Cr(CO)₃; 407(15) M – Cr(CO)₃ – Me; 195(100) C₁₃H₁₁Si.

References

- 1 W. Wojnowski, K. Peters, E.-M. Peters and H.G. von Schnering, Z. Kristallogr., in press.
- 2 B. Becker and W. Wojnowski, Synth. React. Inorg. Met.-Org. Chem., 12 (1982) 565.
- 3 B. Becker and W. Wojnowski, Synth. React. Inorg. Met.-Org. Chem., 14 (1984) 537.
- 4 W. Wojnowski, K. Peters, E.-M. Peters and H.G. von Schnering, Z. Anorg. Allg. Chem., 525 (1985) 121.
- 5 W. Wojnowski, W. Bocheńska, K. Peters, E.-M. Peters and H.G. von Schnering, Z. Anorg. Allg. Chem., 533 (1986) 165.

- 6 K.L. Geisinger and G.V. Gibbs, Phys. Chem. Minerals, 7 (1981) 204.
- 7 M. Ishikawa and T. Tabohashi, J. Organomet. Chem., 271 (1984) C4.
- 8 A. Herman, B. Becker and W. Wojnowski, Z. Anorg. Allg. Chem., 450 (1979) 178.
- 9 W. Wojnowski, K. Peters, M.C. Böhm and H.G. von Schnering, Z. Anorg. Allg. Chem., 523 (1985) 169.
- 10 G.M. Sheldrick, SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. Göttingen, 1982, unpublished results.
- 11 C.A.L. Mahaffy and P.L. Pauson, Inorg. Synth., Vol. XIX, 1979, p. 155.
- 12 H. Gilman and R.D. Gorsich, J. Am. Chem. Soc., 77 (1955) 6380.
- 13 M. Ishikawa, T. Tabohashi, H. Ohashi, M. Kumada and J. Iyoda, Organometallics, 2 (1983) 351.